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1. Introduction

All neutral mesons—K0, B0, Bs, D0—have been observed to oscillate from particle to antipar-
ticle. The oscillation frequency ∆M tests the Standard Model’s pattern of flavor violation. The
phenomenology is especially simple for neutral B mesons (normal and strange), because the flavor-
changing dynamics play out predominantly at distances much shorter than the scale of QCD. In the
case of the B mesons, the width difference ∆Γ of the two propagating eigenstates also arises pre-
dominantly at short distances. It is especially intriguing (at least for now), because measurements
of ∆Γs and the CP phase φs of the Bs are in imperfect agreement with the Standard Model [1, 2].

Neutral B mixing stems from ∆B = 2 flavor-changing transitions. In the Standard Model
these arise first at the one-loop level, so non-Standard contributions are conceivably of com-
parable size. The observables are then (approximately) ∆M = 2|M12|, ∆Γ = 2|Γ12|cosφ , and
φ = arg(−M12/Γ12), where M12 and Γ12 are the off-diagonal elements of the mass and width
matrices of the two-state systems:

M12 =
G2

F

8π2
M2

W

M2
Bq

(V ∗tqVtb)2S0(m2
t /M2

W )ηb(µ)〈B|q̄Lγµbq̄Lγ
µb|B̄〉+BSM, (1.1)

Γ12 = −
G2

Fm2
b

6πMBq

[
G(V,µ)〈B|q̄Lγµbq̄Lγ

µb|B̄〉+GS(V,µ)〈B|q̄Lbq̄Lb|B̄〉
]
+BSM, (1.2)

where V is the CKM matrix, and S0, ηb, G, and GS are short-distance effects, computed in elec-
troweak and QCD perturbation theory. Contributions beyond the Standard Model (“BSM”) are
not written out explicitly. Because of the V −A structure of the electroweak interaction, only the
left-handed (light) quark field q̄L = q̄ 1

2(1+ γ5) appears.
The remainder of this paper is organized as follows. Section 2 constructs lattice operators

with staggered light quarks and Fermilab heavy quarks, corresponding to the 4-quark operators in
Eqs. (1.1) and (1.2). (The construction suffices for any light quark with chiral symmetry and heavy
quark with heavy-quark symmetry.) We give a status report of our numerical results in Sec. 3.
Section 4 summarizes and presents some of our plans for the future.

2. Short-Distance Matching

To compute the hadronic matrix elements in Eqs. (1.1) and (1.2), one has to derive an expres-
sion in lattice gauge theory that approximates well q̄Lγµbq̄Lγµb and q̄Lbq̄Lb. The lattice operators
can then be computed, and the numerical and other uncertainties estimated, to determine M12 and
Γ12. Similar operators appear BSM, for which the following derivation serves as a template.

For the light valence quark we take naive asqtad propagators

〈ϒ(x)ϒ̄(y)〉U = Ω(x)Ω−1(y)〈χ(x)χ̄(y)〉U , (2.1)

where χ is the one-component staggered fermion field; ϒ is a 4-component naive field, and 〈· · ·〉U
denotes the fermion average in a fixed gauge field U . For the heavy quark we use

Ψ = [1+d1(m0a)γγγ ·DDD]ψ, (2.2)

where ψ is the fermion field appearing in the Fermilab action [3] or an improved action with the
same design features [4].
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We aim to construct lattice operators Q and QS such that

Q .= q̄Lγµbq̄Lγ
µb+O(a2), (2.3)

QS
.= q̄Lbq̄Lb+O(a2), (2.4)

where .= means “has the same matrix elements as.” Here the O(a2) term depends on mba. As long
as one retains small corrections to heavy-quark symmetry, it remains bounded even as mba→ ∞;
as long as certain Dirac off-diagonal improvements are consistently introduced [3, 4], they vanish
as a→ 0. These two elements are the essence of the Fermilab method.

Our construction starts with the lattice operators ϒ̄LγµΨϒ̄LγµΨ and ϒ̄LΨϒ̄LΨ. According to
the HQET theory of cutoff effects [5, 6, 7], these lattice operators can be described by

ϒ̄LγµΨϒ̄Lγ
µ

Ψ
.= 2Clatq̄Lγµh(+)q̄Lγ

µh(−) +2δClatq̄Lh(+)q̄Lh(−) +
5

∑
i=1

Blat
i Qi + · · · , (2.5)

ϒ̄LΨϒ̄LΨ
.= 2δClat

S q̄Lγµh(+)q̄Lγ
µh(−) +2Clat

S q̄Lh(+)q̄Lh(−) +
5

∑
i=1

Blat
Si Qi + · · · , (2.6)

where h(±) are the heavy-quark fields of the heavy-quark effective theory (HQET), satisfying
h(±) = 1

2(1± γ4)h(±). The sums are over five dimension-7, ∆B = 2, four-quark operators, similar
to those written out, but with an extra derivative. The series continues with operators of dimen-
sion 8 and higher. On the right-hand side of Eqs. (2.5) and (2.6) the operators are to be understood
with some continuum regulator and renormalization scheme. Discretization effects are lumped into
the short-distance coefficients Clat

(S), δClat
(S), and Blat

(S)i, which depend on the couplings of the lattice
action, as well as the lattice spacing a and the (renormalized) gauge coupling and quark masses.

The next step is to note that the target operators have a completely parallel description in
HQET, namely

q̄Lγµbq̄Lγ
µb .= 2Cq̄Lγµh(+)q̄Lγ

µh(−) +2δCq̄Lh(+)q̄Lh(−) +
5

∑
i=1

BiQi + · · · , (2.7)

q̄Lbq̄Lb .= 2δCSq̄Lγµh(+)q̄Lγ
µh(−) +2CSq̄Lh(+)q̄Lh(−) +

5

∑
i=1

BSiQi + · · · , (2.8)

where the (continuum HQET) operators on the right-hand sides of Eqs. (2.7) and (2.8) are precisely
the same as those on the right-hand sides of Eqs. (2.5) and (2.6). The coefficients differ, however,
because the lattice does not appear on the left-hand side of Eqs. (2.7) and (2.8).

With Eqs. (2.5)–(2.8) the desired construction of Q and QS is immediate:

Q = Zϒ̄LγµΨϒ̄Lγ
µ

Ψ+δZϒ̄LΨϒ̄LΨ+∑
i

biQi, (2.9)

QS = ZSϒ̄LΨϒ̄LΨ+δZSϒ̄LγµΨϒ̄Lγ
µ

Ψ+∑
i

bSiQi, (2.10)

where the Qi are lattice discretizations of the Qi, such that Qi
.= Clat

i j Q j + dimension 8. Simple
algebra then shows that if

Z =
[
CClat

S −δCδClat
S
]
/
[
ClatClat

S −δClat
δClat

S
]
, (2.11)

δZ =
[
δC−Z δClat]/Clat

S , (2.12)

bi =
[
B j−Z Blat

j −δZ Blat
S j
]
Clat−1

ji , (2.13)
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then Eq. (2.3) is satisfied. Similar expressions exist for ZS, δZS, and bSi, such that Eq. (2.4) is
satisfied. From the structure of Eqs. (2.11)–(2.13) it is clear that the regulator and renormalization
scheme dependence of the HQET drops out of Z(S), δZ(S), and b(S)i.

Let us close this section with a few remarks. The enumeration of the operators Qi, and further
operators of dimension 8, is an easy extension of Ref. [6]. In perturbation theory C(S) (δC(S) and
the Bi) start at tree (one-loop) level, but they could also be determined nonperturbatively, adapting
schemes such as that of Ref. [8]. Because of the way Fermilab lattice actions are constructed [3,
4], starting with Wilson fermions, one has lima→0Clat = C, etc., without fine tuning. (In lattice
NRQCD this is possible only with fine tuning.) Although our derivation hinges on the HQET
description of cutoff effects, one could also (for mba� 1) use the Symanzik theory; the results for
Z(S), δZ(S), and b(S)i would be the same.

We have embarked on a one-loop calculation of Z(S) and δZ(S). At present they are being
checked. As with currents [6, 7], it may prove prudent to write

Z(S) = ZVbbZVqqρ(S), (2.14)

where ZVbb and ZVqq are nonperturbatively determined matching factors for the vector current. The
remaining factor ρ(S) could have a tamer perturbative expansion, because of cancellation among
diagrams. We do not expect the cancellation to be as good as in the case of currents, because
4-quark operators have new diagrams in which a gluon is exchanged from one bilinear to the other.

With the rotation of Eq. (2.2), the b(S)i in Eqs. (2.9) and (2.10) are of order αs and are not
available. The calculations of the 4-quark operator matrix elements described below thus have
discretization errors of the form

B(S)i〈Qi〉
〈q̄Lγµbq̄Lγµb〉

∼ aΛ
αs

2(1+m0a)
, (2.15)

dim 8 ops ∼ a2
Λ

2 f (m0a), (2.16)

where the mass dependence of the B(S)i is an Ansatz with the correct asymptotic behavior as
m0 → ∞ and as m0a→ 0 for the Fermilab action. The functions f (m0a) multiplying the O(a2)
discretization effects are known for the Fermilab action [6, 9].

3. Long-Distance Matrix Elements

To compute the matrix elements we use a data-object called the open-meson propagator [10].
Valence quark propagators are started at an origin (xxx0, t0), where the 4-quark operator sits, out
to all (xxx, t). Since, for this problem, we are interested only in zero-momentum pseudoscalars, at
each t the Dirac indices are contracted with γ5, and this contraction is summed over all xxx. On the
other hand, M12 and Γ12 require two (several) Dirac structures in (beyond) the Standard Model.
Therefore we leave the Dirac and color indices free at (xxx0, t0), writing out one 12× 12×N4 data-
object per configuration, where N4 is the total number of time slices. Three-point functions are
formed by contracting open-meson propagators at times ti and t f with the Dirac structure of each
4-quark operator. Two-point functions from t0 to t are used to normalize the matrix elements and
to provide a cross-check with our separate calculations of B-meson decay constants [11].
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Our calculations are carried out on several ensembles of lattice gauge fields with a realistic
sea of 2+1 flavors, made available by the MILC Collaboration [12, 13]. The ensembles used here
are listed in Table 1 together with the valence quark masses. The sea quarks are simulated with
the asqtad action for staggered quarks, and with the fourth-root procedure to reduce the number of
species from 4 to 1.

To discuss the analysis, it is helpful to introduce some notation. The four-quark matrix ele-
ments are written

〈B0
q|ϒ̄LγµΨϒ̄Lγ

µ
Ψ|B̄0

q〉= 2
3 MBqβ

2
q , (3.1)

where the quantity βq is well-behaved in the heavy-quark limit. We extract βs and βd from 2- and
3-point functions. With staggered valence quarks these correlators have contributions from wrong-
parity states with time dependence (−1)t/a. We are careful to disentangle these states. To isolate
the ground state we use Bayesian fits, varying the number of states.

We then carry out a partially-quenched (i.e., mq and ml varying independently) chiral extrap-
olation of βq/βs to obtain βd/βs, using rooted staggered chiral perturbation theory for βq [14, 15].
With more valence masses than sea masses, the effects of partial quenching constrain the param-
eters of χPT more stringently than would unitary (mq = ml) data alone. Fitting the ratio βd/βs

yields smaller statistical errors than fitting r3/2
1 βq directly. We also carry out a chiral extrapolation

of r3/2
1 βs, which is mild, because it depends only on the sea masses (aml,amh).
In the phenomenology of B-B̄ mixing it is conventional to write the matrix element as

〈B0
q|q̄Lγµbq̄Lγ

µb|B̄0
q〉= 2

3 f 2
Bq

M2
Bq

BBq . (3.2)

Neglecting Z−1 and δZ in Eq. (2.9) one sees that βq = fBq

√
MBqBBq . Of special importance is

ξ = fBsB
1/2
Bs

/ fBd B1/2
Bd

= (MBd /MBs)
1/2(βs/βd), (3.3)

where, again, the right-most expression neglects Z−1 and δZ. We use the experimentally measured
meson masses and our chirally extrapolated βs and βd/βs to obtain fBsB

1/2
Bs

and ξ . The light-quark-
mass dependence is shown in Fig. 1. Further plots can be found in Ref. [16].

A preliminary, but comprehensive, error budget is given in Table 2. The B∗-B-π coupling gB∗Bπ

enters the expressions for the chiral extrapolation. The data are not precise enough to determine

a (fm) Lattice Nconfs Sea (aml,amh) Valence amq

0.12 243×64 529 (0.005,0.05) 0.005, 0.007, 0.01, 0.02, 0.03, 0.0415
“coarse” 203×64 833 (0.007,0.05) 0.005, 0.007, 0.01, 0.02, 0.03, 0.0415

203×64 592 (0.01,0.05) 0.005, 0.007, 0.01, 0.02, 0.03, 0.0415
203×64 460 (0.02,0.05) 0.005, 0.007, 0.01, 0.02, 0.03, 0.0415

0.09 283×96 557 (0.0062,0.031) 0.0031, 0.0044, 0.062, 0.0124, 0.0272, 0.031
“fine” 283×96 534 (0.0124,0.031) 0.0031, 0.0042, 0.062, 0.0124, 0.0272, 0.031

Table 1: Input parameters for the numerical calculations. The lattice spacings listed are approximate
mnemonics. The heavier sea mass mh is close to the strange mass, which then is subject to retuning a poste-
riori, yielding the last value of amq for the coarse ensembles.

5



B0
q-B̄0

q Mixing and Matching Andreas S. Kronfeld

gB∗Bπ , so it must be set with a prior distribution in the chiral fits. A range that encompasses
phenomenological and quenched lattice estimates is gB∗Bπ = 0.35± 0.14. The error in Table 2
corresponds to this range, while the prior width in the fits is ±0.28.

Until the perturbation theory has been checked, we prefer not to report a value for fBsB
1/2
Bs

.
The matching corrections nearly cancel in the ratio βq/βs; the results with and without Z− 1 and
δZ are nearly the same, as shown in Fig. 1b. With the error budget discussed above we find

ξ = 1.205±0.037stat±0.034syst, (3.4)

unchanged since Lattice 2008 [15].

4. Future Prospects

When the perturbative matching has been completely checked, we will be in a position to
present final results. We can also compare different strategies, in particular, whether the perturba-
tive expansion seems to work better for ρ(S) or Z(S) (cf. Eq. (2.14)).

In the longer term, we plan to obtain results for 4-quark operators that enter beyond the Stan-
dard Model. Furthermore, the MILC ensembles now not only have much higher statistics than the
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Figure 1: Light-quark-mass dependence of fBsB
1/2
Bs

and ξ . The curve in the right plot is a fit to all partially-
quenched data, not just the shown unitary data.

Source βs βd ξ

Statistics 2.7 4.0 3.1
Scale (r1) 3.0 3.1 0.2
Sea and valence quark masses 0.3 0.5 0.7
b-quark hopping parameter ≤ 0.5 ≤ 0.1 ≤ 0.1
χPT + light-quark discretization 0.4 2.5 2.8
gB∗Bπ 0.3 0.6 0.3
Heavy-quark discretization 2 2 0.2
Matching (perturbation theory) ∼ 4 ∼ 4 ≤ 0.5
Finite volume ≤ 0.5 ≤ 0.5 ≤ 0.1
Total 6.1 7.3 4.3

Table 2: Preliminary error budget. Entries in percent.
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current project at a = 0.12 and 0.09 fm, but also extend to smaller lattice spacings, a = 0.06 and
0.045 fm. New runs with higher statistics and five lattice spacings (also 0.15 fm) are underway.
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